Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Med Virol ; 95(1): e28384, 2023 01.
Article in English | MEDLINE | ID: covidwho-2148399

ABSTRACT

COVID-19 causes morbid pathological changes in different organs including lungs, kidneys, liver, and so on, especially in those who succumb. Though clinical outcomes in those with comorbidities are known to be different from those without-not much is known about the differences at the histopathological level. To compare the morbid histopathological changes in COVID-19 patients between those who were immunocompromised (Gr 1), had a malignancy (Gr 2), or had cardiometabolic conditions (hypertension, diabetes, or coronary artery disease) (Gr 3), postmortem tissue sampling (minimally invasive tissue sampling [MITS]) was done from the lungs, kidney, heart, and liver using a biopsy gun within 2 hours of death. Routine (hematoxylin and eosin) and special staining (acid fast bacilli, silver methanamine, periodic acid schiff) was done besides immunohistochemistry. A total of 100 patients underwent MITS and data of 92 patients were included (immunocompromised: 27, malignancy: 18, cardiometabolic conditions: 71). In lung histopathology, capillary congestion was more in those with malignancy, while others like diffuse alveolar damage, microthrombi, pneumocyte hyperplasia, and so on, were equally distributed. In liver histopathology, architectural distortion was significantly different in immunocompromised; while steatosis, portal inflammation, Kupffer cell hypertrophy, and confluent necrosis were equally distributed. There was a trend towards higher acute tubular injury in those with cardiometabolic conditions as compared to the other groups. No significant histopathological difference in the heart was discerned. Certain histopathological features were markedly different in different groups (Gr 1, 2, and 3) of COVID-19 patients with fatal outcomes.


Subject(s)
COVID-19 , Thrombosis , Humans , COVID-19/pathology , SARS-CoV-2 , Lung/pathology , Heart
2.
Sci Rep ; 12(1): 4058, 2022 03 08.
Article in English | MEDLINE | ID: covidwho-2004786

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) is a key host protein by which severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) enters and multiplies within cells. The level of ACE2 expression in the lung is hypothesised to correlate with an increased risk of severe infection and complications in COrona VIrus Disease 2019 (COVID-19). To test this hypothesis, we compared the protein expression status of ACE2 by immunohistochemistry (IHC) in post-mortem lung samples of patients who died of severe COVID-19 and lung samples obtained from non-COVID-19 patients for other indications. IHC for CD61 and CD163 was performed for the assessment of platelet-rich microthrombi and macrophages, respectively. IHC for SARS-CoV-2 viral antigen was also performed. In a total of 55, 44 COVID-19 post-mortem lung samples were tested for ACE2, 36 for CD163, and 26 for CD61, compared to 15 non-covid 19 control lung sections. Quantification of immunostaining, random sampling, and correlation analysis were used to substantiate the morphologic findings. Our results show that ACE2 protein expression was significantly higher in COVID-19 post-mortem lung tissues than in controls, regardless of sample size. Histomorphology in COVID-19 lungs showed diffuse alveolar damage (DAD), acute bronchopneumonia, and acute lung injury with SARS-CoV-2 viral protein detected in a subset of cases. ACE2 expression levels were positively correlated with increased expression levels of CD61 and CD163. In conclusion, our results show significantly higher ACE2 protein expression in severe COVID-19 disease, correlating with increased macrophage infiltration and microthrombi, suggesting a pathobiological role in disease severity.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/pathology , Lung/metabolism , Acute Lung Injury/pathology , Adolescent , Adult , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/genetics , Antigens, CD/genetics , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/genetics , Antigens, Differentiation, Myelomonocytic/metabolism , Autopsy , COVID-19/virology , Case-Control Studies , Female , Humans , Immunohistochemistry , Integrin beta3/genetics , Integrin beta3/metabolism , Lung/pathology , Male , Middle Aged , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , SARS-CoV-2/isolation & purification , Severity of Illness Index , Young Adult
3.
Indian J Pathol Microbiol ; (65 Suppl 1): S122-S124, 2022 05.
Article in English | MEDLINE | ID: covidwho-1928751

Subject(s)
Lighting , Nervous System , Humans
4.
Dis Model Mech ; 15(5)2022 05 01.
Article in English | MEDLINE | ID: covidwho-1793721

ABSTRACT

To elucidate the molecular mechanisms that manifest lung abnormalities during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, we performed whole-transcriptome sequencing of lung autopsies from 31 patients with severe COVID-19 and ten uninfected controls. Using metatranscriptomics, we identified the existence of two distinct molecular signatures of lethal COVID-19. The dominant 'classical' signature (n=23) showed upregulation of the unfolded protein response, steroid biosynthesis and complement activation, supported by massive metabolic reprogramming leading to characteristic lung damage. The rarer signature (n=8) that potentially represents 'cytokine release syndrome' (CRS) showed upregulation of cytokines such as IL1 and CCL19, but absence of complement activation. We found that a majority of patients cleared SARS-CoV-2 infection, but they suffered from acute dysbiosis with characteristic enrichment of opportunistic pathogens such as Staphylococcus cohnii in 'classical' patients and Pasteurella multocida in CRS patients. Our results suggest two distinct models of lung pathology in severe COVID-19 patients, which can be identified through complement activation, presence of specific cytokines and characteristic microbiome. These findings can be used to design personalized therapy using in silico identified drug molecules or in mitigating specific secondary infections.


Subject(s)
COVID-19 , Autopsy , Cytokines , Humans , Lung/pathology , SARS-CoV-2
5.
Expert Rev Respir Med ; 15(10): 1367-1375, 2021 10.
Article in English | MEDLINE | ID: covidwho-1338604

ABSTRACT

OBJECTIVES: To study the histopathology of patients dying of COVID-19 using post-mortem minimally invasive sampling techniques. METHODS: This was a single-center observational study conducted at JPNATC, AIIMS. Thirty-seven patients who died of COVID-19 were enrolled. Post-mortem percutaneous biopsies were taken from lung, heart, liver, kidney and stained with hematoxylin and eosin. Immunohistochemistry was performed using CD61 and CD163. SARS-CoV-2 virus was detected using IHC with primary antibodies. RESULTS: The mean age was 48.7 years and 59.5% were males. Lung histopathology showed diffuse alveolar damage in 78% patients. Associated bronchopneumonia was seen in 37.5% and scattered microthrombi in 21% patients. Immunopositivity for SARS-CoV-2 was observed in Type II pneumocytes. Acute tubular injury with epithelial vacuolization was seen in 46% of renal biopsies. Seventy-one percent of liver biopsies showed Kupffer cell hyperplasia and 27.5% showed submassive hepatic necrosis. CONCLUSIONS: Predominant finding was diffuse alveolar damage with demonstration of SARS-CoV-2 protein in the acute phase. Microvascular thrombi were rarely identified in any organ. Substantial hepatocyte necrosis, Kupffer cell hypertrophy, microvesicular, and macrovesicular steatosis unrelated to microvascular thrombi suggested that liver might be a primary target of COVID-19.


Subject(s)
COVID-19 , Autopsy , Humans , Lung , Male , Middle Aged , SARS-CoV-2 , Tertiary Care Centers
SELECTION OF CITATIONS
SEARCH DETAIL